Technical Meeting on the Status of Molten Salt Reactor Technology (622-I3-TM-52244), IAEA Headquarters, Vienna, Austria

Thorium Molten Salt Reactors (TMSR) Development in China

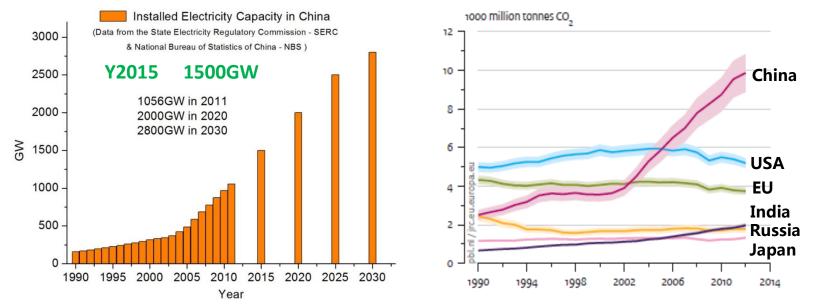
Dai Zhimin, Zou Yang, Chen Kun

Institute of Advanced Nuclear Energy (ANEI), CAS

Outline

TMSR Program Overview Team & Collaboration TMSR Research Progress

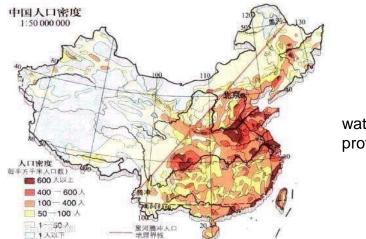
Outline


TMSR Program Overview

Team & Collaboration

TMSR Research Progress

Energy Demand and CO₂ Emission of China


◆ By year 2030, about 3000 GW-level electricity capacities are needed

◆ Chinese electricity generation is dominated by fossil sources, coal (~70%)
 Consumption of fuel produces large amount of CO₂ → greenhouse effect
 Burning coal produces airborne particles → frequent haze in China
 2012: China became the top CO₂ emission Country
 ■ The Solution is developing Nuclear Energy 4

Development of NPPs in China

- Up to May, 2016, there are 32 NPPs being operable, 22 NPPs under construction and 42 NPPs planned.
- Most of these NPPs are PWR , which consume lot of water.
- Water Scarcity in China, NPPs based on PWR are located along the coast, the total capacity is limited and can not satisfy the clean energy demand.
- Solution is to develop advanced non-water nuclear reactor

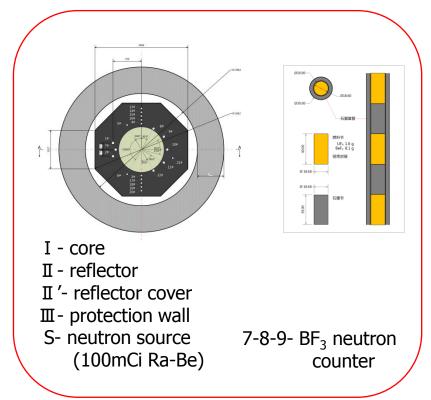
R&D of Advanced Nuclear Reactor in China

Qinghua University: HTR-10 & HTR-PM (~200MWe)

China Institute of Atomic Energy, CNNC: CEFR

(65MWth SFR)

- SINAP (ANEI), CAS: TMSR
- IMP, IHEP&INEST, CAS: ADS (LFR)


Why TMSR?

- Fuel Supply: Thorium is 3 to 4 times more abundant than Uranium, especially China lack of Uranium but rich of Thorium.
- Nuclear Proliferation: Difficult to make weapon usable materials because of 232U (Gamma-irradiation).
- Nuclear Waste: More than 90% reduction of long term radio-toxicity of spent fuel.
- MSR is suitable for thorium utilization, Thorium Molten Salt Reactor Energy System (TMSR).
- TMSR with Air-cooling Brayton Cycle is suitable for the mid and west of China & others where water is lacking.

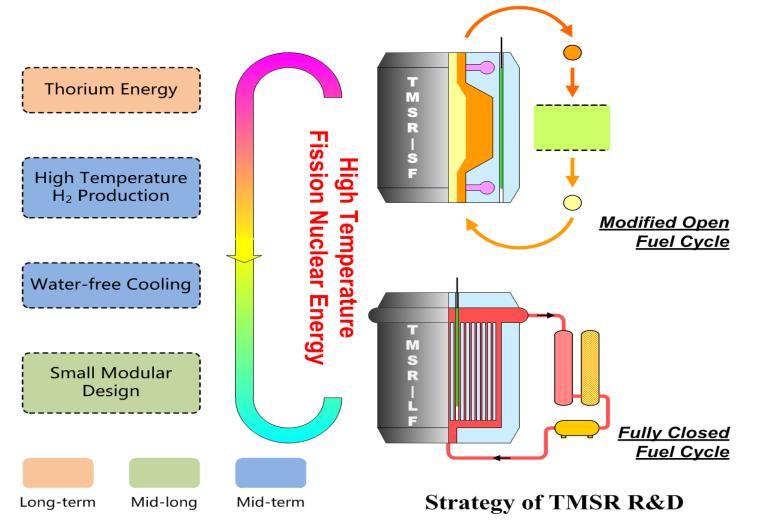
Early Efforts for TMSR in China

- 1970, China started NPP Project in Shanghai, and its original goal is to build 25 MWe TMSR
- 1971.9.13, a zero-power MSR was built and reached critical in SINAP, but it was shutdown at the end of 1971.
- 1972-1975, the goal was changed to the Qinshan 300
 MWe (Qinshan NPP-I), which has been operating since 1991.

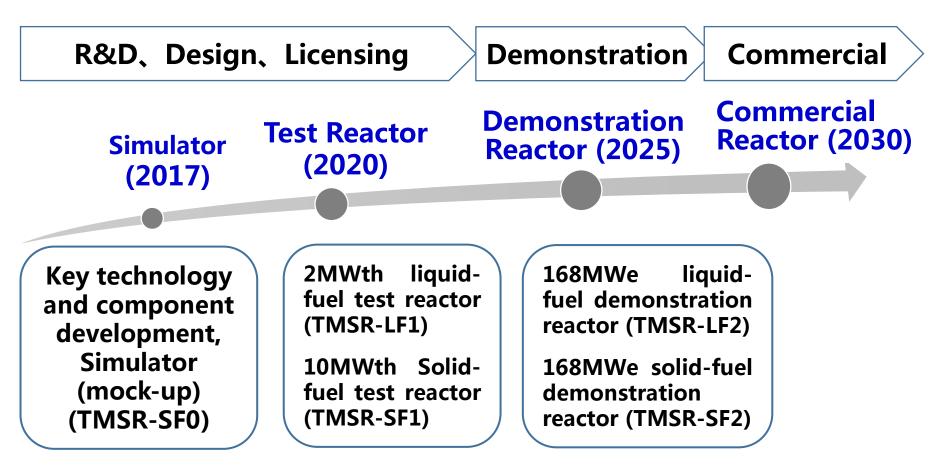
China Restarted TMSR Program

- January, 2011, Chinese Academy of Sciences (CAS) initiated (restarted) "Thorium Molten Salt Reactor Nuclear Energy System" (TMSR) Strategetic Pioneer Sci.&Tech. Project.
- August, 2013, TMSR was one of the National-Energy Major R&D projects of Chinese National Energy Administration (CNEA).
- May, 2015, TMSR was one of the Major S&T Projects by Shanghai Local Government for "Development of Global S&T Innovation Center".

The Aims of TMSR Program


- The Aims of TMSR Program is to develop Th-Energy, Non-electric application of Nuclear Energy based on Liquid-Fuel TMSR and Solid-Fuel TMSR during coming 20-30 years.
 - Liquid-Fuel TMSR (TMSR-LF)--- MSRs
 - Solid-Fuel TMSR (TMSR-SF)--- FHRs

TMSR-LF: Optimized for utilization of Thorium. TMSR-SF: Optimized for high-temperature (~700 °C) based hybrid nuclear energy application (Non-electric application).


Developing two-types MSR, Realizing four Application

---National Mission-Oriented

TMSR Development Strategy

CAS TMSR Project (2011-2018): 2.17B RMB Shanghai Local Government (2015-2017): 115M RMB

TMSR Research Bases

Fundamental research base at Jiading Campus of SINAP


Material, Simulation, Thermal hydraulic, Safety facilities, Education and training et al., (without high radioactivity)

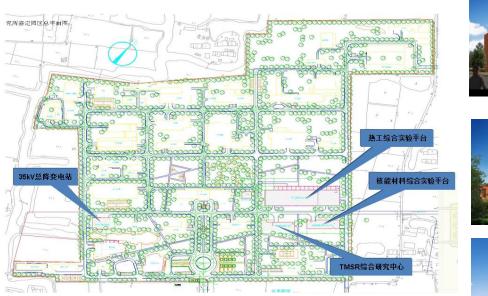
Nuclear R&D Park (TMSR Reactor Site)

Experimental reactors, High radioactivity Lab., Chemical reprocessing Lab. et al.,

Fundamental research base in Jiading

Design Platform

Material test Lab.



Molten salt measure Lab.

Fundamental research base in Jiading(II)

 3 new building with 18000 m² has been finished in mid of 2016 at Jiading Campus of SINAP, which are Integrated Research Center, Thermo-tech Test Platform, Nuclear materials Test Platform

Thermo-tech Test Platform

Nuclear materials Test Platform

TMSR Test Reactor Site

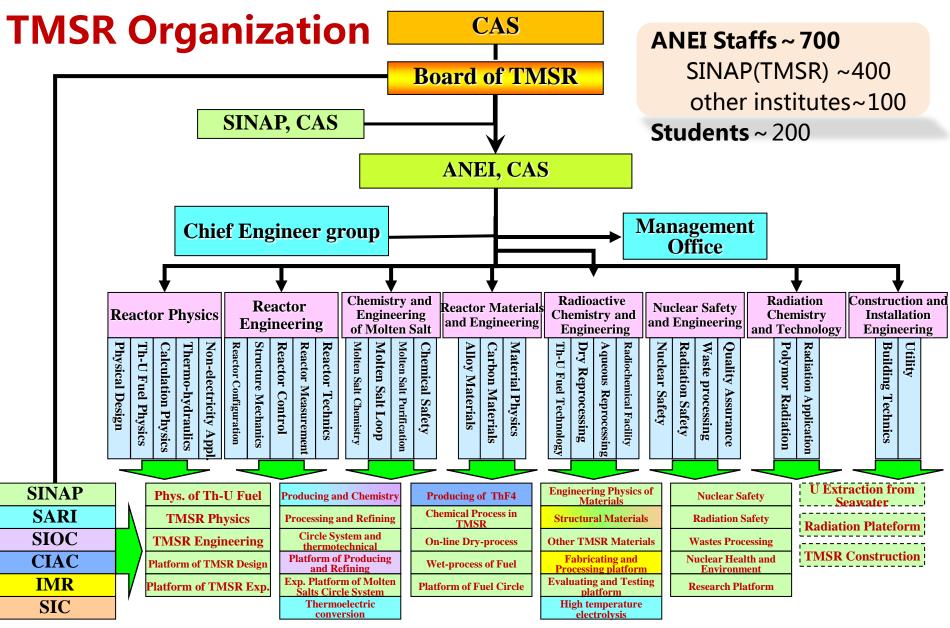
CAS and SPIC signed a science and technology collaboration agreement in March, 2016.

Haiyang is now the candidate site for test reactors

CAS and SPIC are jointly developing a Nuclear R&D park in Haiyang

 State Power Investment Corporation (SPIC) was newly established through the merger of China Power Investment Corporation (CPI) and State Nuclear Power Technology Corporation (SNPTC)

Outline


Background

TMSR Project Overview

Team & Collaboration

TMSR Research Progress

Institute of Advanced Nuclear Energy

The Institute of Advanced Nuclear Energy (ANEI) is an organization established by CAS for leading the TMSR program

- There are 7 institutes of CAS involved in TMSR program
- There are about 500 staffs and 200 graduatestudents of ANEI, in which ~400 staffs from SINAP and ~100 staffs from other institutes

Research institutes

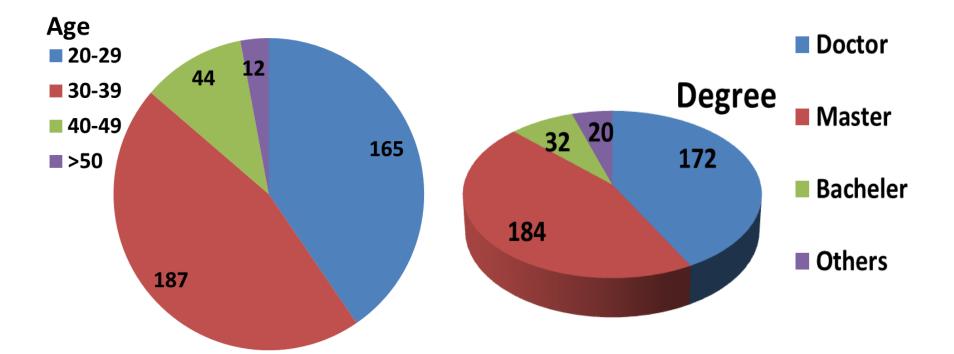
Shanghai Institute of Applied Physics

Shanghai Institute of Organic Chemistry

Shanghai Advanced Research Institute

Institute of Metal Research

Changchun Institute of Applied Chemistry Shanghai Institute of Ceramics


Institute of Coal Chemistry

Tasks in TMSR program

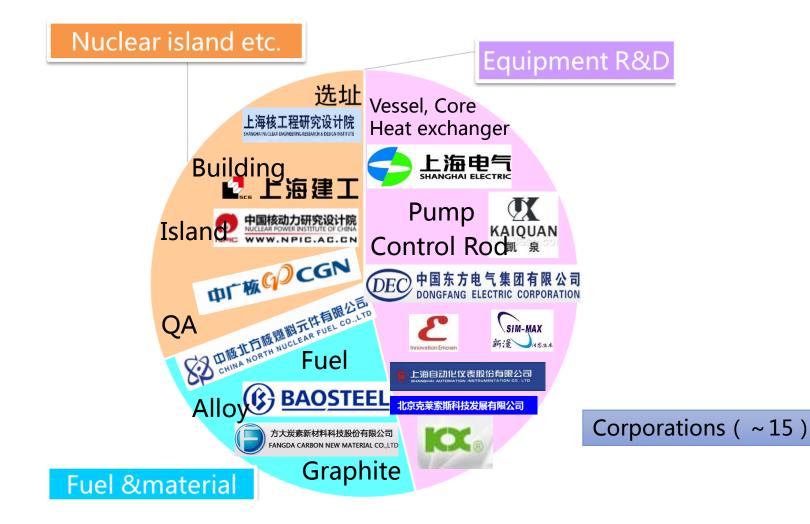
- undertakes more than 80% of the R&D work with about 80% of the funding
- Extraction methods for lithium isotope separation
- Thermal power conversion technology
- Production of methanol with CO₂
- R&D of nickel-based alloy with corrosion resistance to molten salt
- Production of nuclear grade thorium
- R&D of SiC-SiC composite materials and carbon-based materials
- R&D of new grade of nuclear graphite

The SINAP TMSR Team

~400 employees with average age of 33.
 ~100 senior staffs (above subgroup leaders) with average age of 40.

TMSR Domestic Cooperation With Univ./Institute

Research Fields :


- Fundamental research
- Data/method/software
- Specific technology R&D

Institutes (~10)

Universities (~20)

TMSR Cooperation With Domestic Corporation (Design/equipment manufacture)

TMSR International Cooperation

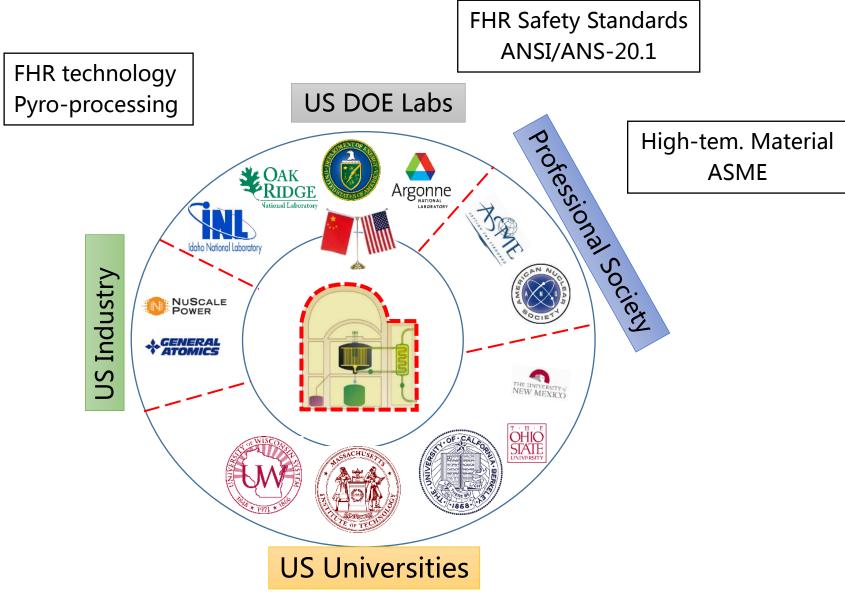
- Th Utilization, Reactor Tech.
 Material, Molten Salt Tech,
- Pyro-processing
- Nuclear Safety Standards

Organizational Overview

The Chinese Academy of Sciences (CAS) and U.S. Department of Energy (DOE) Nuclear Energy Cooperation Memorandum of Understanding (MOU)

MOU Executive Committee Co-Chairs

China – Mianheng Jiang (CAS) U.S. – Pete Lyons (DOE)


Australia

Future → Russia → EU → Korea → Japan → others

Collaboration with USA-I

The CAS-DOE Nuclear Energy Sciences & Technologies Cooperation MOU signed in Nov. 2011.

First meeting in Shanghai 2012

中國科等德上海走的物理研究所 Shanghai Institute of Applied Physics, Chinese Academy of Sciences

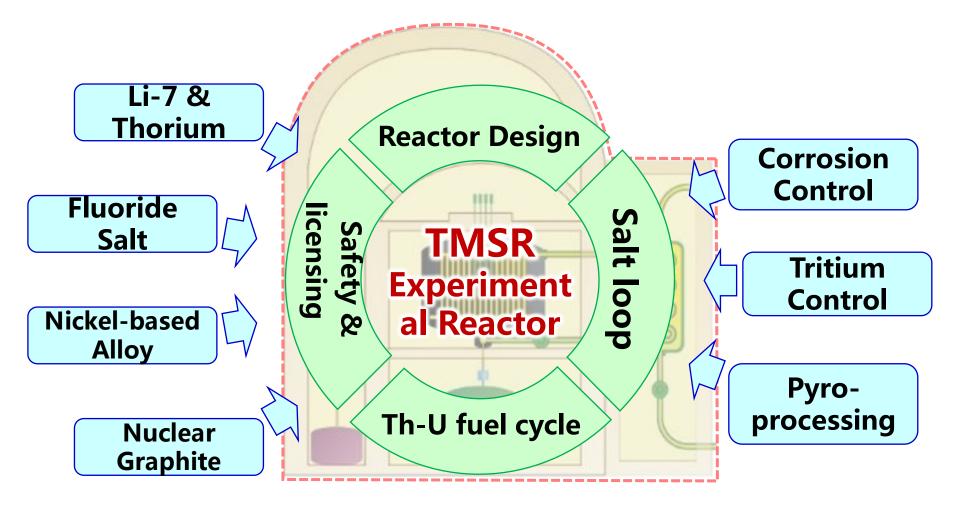
SINAP-ORNL CRADA signed in July 2014

SINAP-MIT MRA signed in March 2015

Review meeting for TMSR-SF1 in UCB

Outline

Background


TMSR Program Overview

Team & Collaboration

TMSR Research Progress

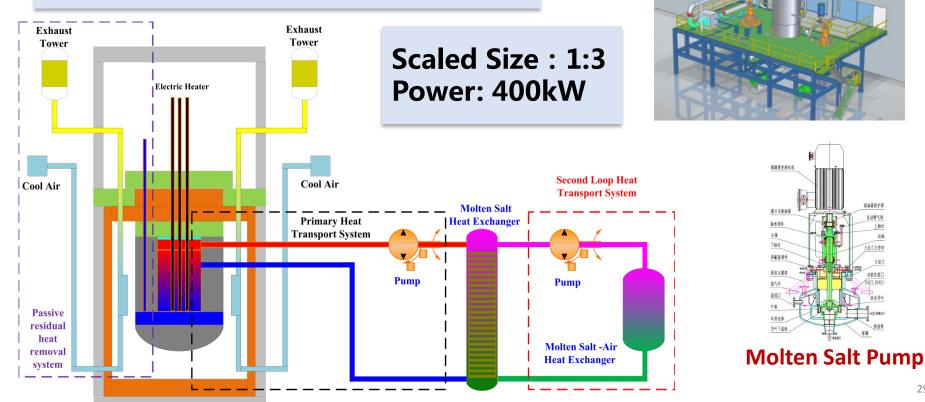
Prototype Systems and Key Techs @ TMSR

Outline

Background

TMSR Program Overview

Team & Collaboration

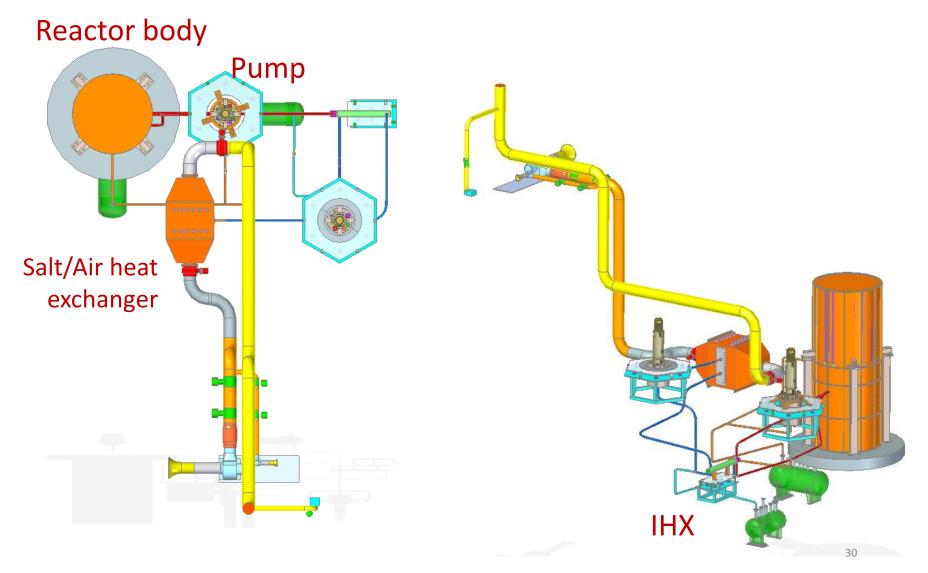

TMSR Research Progress --Reactor Design

TMSR - SF0 (Mock-up)

- Integrated TH effect testing
- Key phenomena verifying
- **Component and material testing**
- **Operator training**

联轴器保护罩

自动排气的


シンネ海台

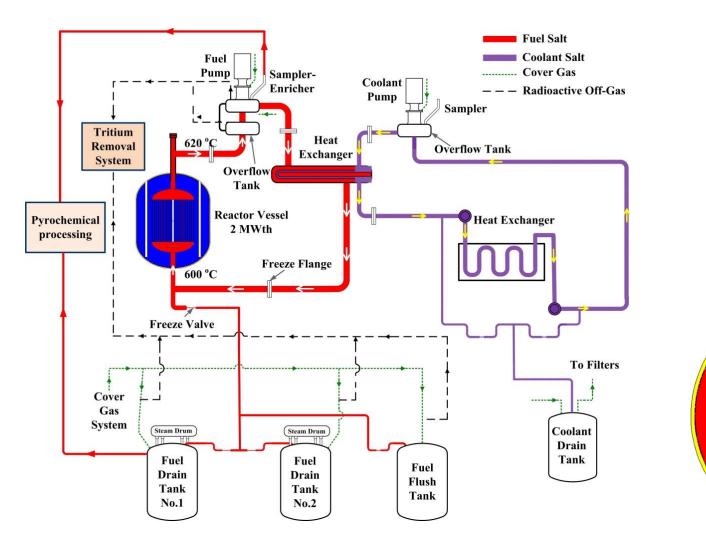
动能传接厂

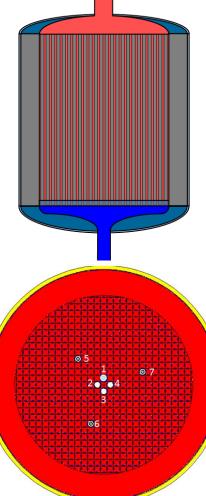
TMSR - Simulator

TMSR-SF0 Layout

TMSR-LF1 (liquid-fuel)

Goals of TMSR-LF1

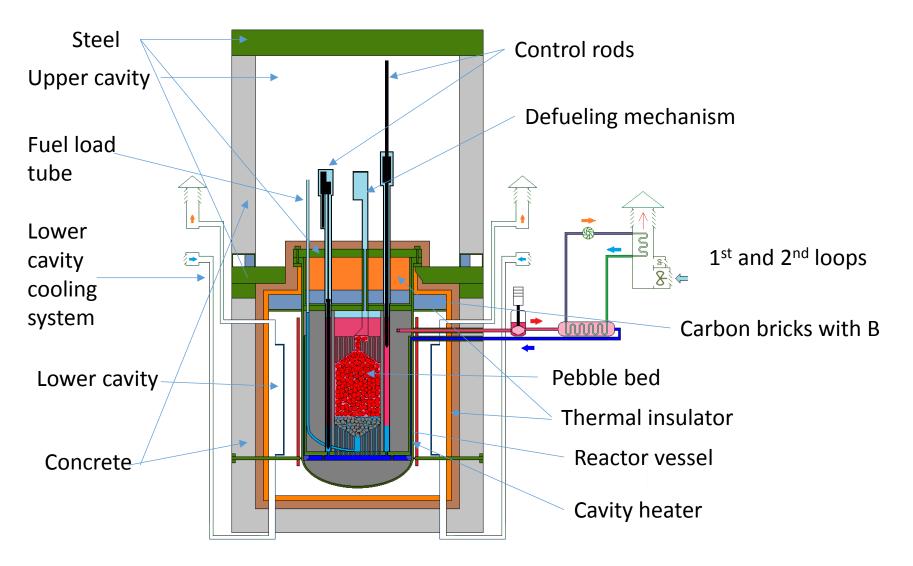

- Verifying the concept of liquid-fuel MSR with pyroprocessing.
- Research on the Th-U cycle and its features.
- Experimental platform for future reactors and Th-U cycle development.


Parameters	Value	Parameters	Value
Thermal power	2 MWth	Candidate salts	LiF-BeF ₂ -UF ₄ -ThF ₄
Inlet temperature	600 °C	Outlet temperature	650 ℃
Number of Loops	2		

TMSR Test Reactor

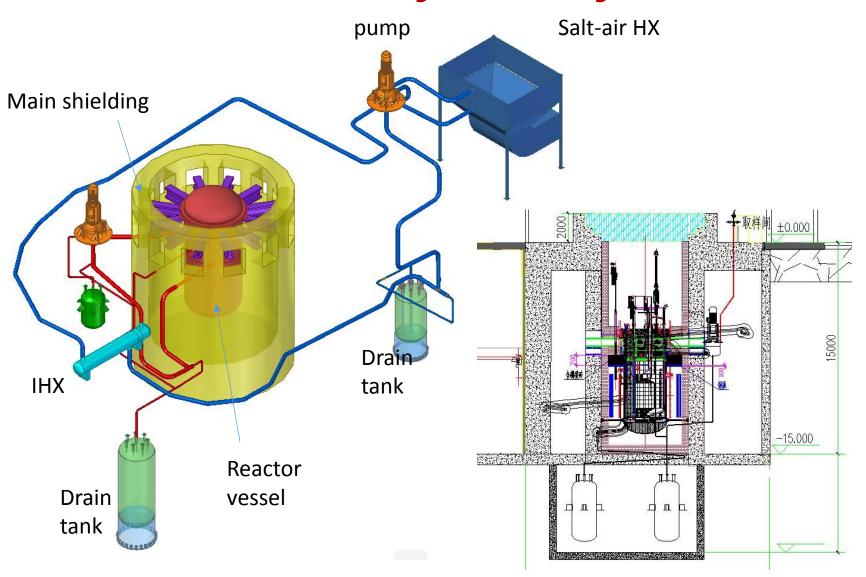
TMSR-LF1 Schematic layout

TMSR-SF1 (Solid-fuel)

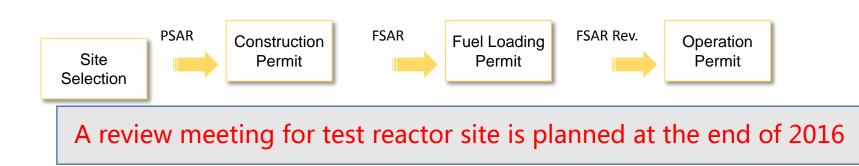

Goals of TMSR-SF1

- Verifying the concept of solid-fuel MSR.
- Experimental platform for future solid-fuel TMSR development: Reactor physics research, design, benchmark of modeling codes, technology and components test, materials and fuel (component) irradiated properties, etc..

Parameters	Value	Parameters	Value
Thermal power	10 MWth	Candidate salts	LiF-BeF ₂
Inlet temperature	600 ℃	Outlet temperature	650 ℃
Number of Loops	2	Fuel element:	TRISO fuel

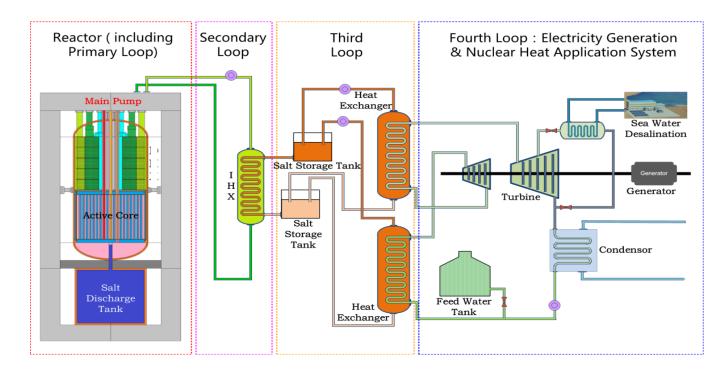


TMSR-SF1 Schematic layout


TMSR-SF1 system layout

Nuclear Safety and Licensing

- Developing safety analysis methods and codes
- Developing safety design criteria and completing safety system design
- Participating in the development of ANSI/ANS-20.1 and 20.2
- Completing preliminary safety analysis report (PSAR)
- Safety design criteria were reviewed and accepted by the review team designated by the National Nuclear Safety Administration (NNSA)
- Safety classification analysis of the TMSR-SF1 and TMSR-LF1 were reviewed and accepted by NNSA, both were classified as Class II research reactors
- Release of cover gas was determined as the MCA
- Conducting salt natural circulation experiments for code validation


Small Modular TMSR-LF2

A multi-purpose clean energy supplier

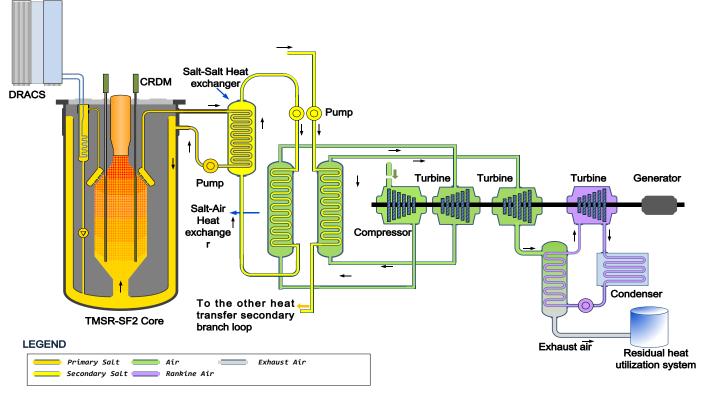
Electricity productionSeawater desalination

Hydrogen or methyl alcohol productionSteam supply

Demonstrate economical utilization of Th in MSR

Main Features of TMSR-LF2

Reactor type	Small modular liquid-fueled Molten Salt Reactor			
Power of one unit	373MWth / 168 MWe			
In / Out temperature	600 / 700 ℃			
Generator	Open Air Brayton Cycle & Super CO ₂ cycle, et.al.			
Fuel salts	LiF-BeF ₂ -UF ₄ -ThF ₄ (19.75% U-235)			
Moderator	Graphite			
Structural material	Nickel-based alloy, stainless steel			
Processing for Fuel cycle	Online degassing (Xe, ke, T), off-line remove solid fission products			
Residual Heat removal	al Whole passive residual heat removal system			

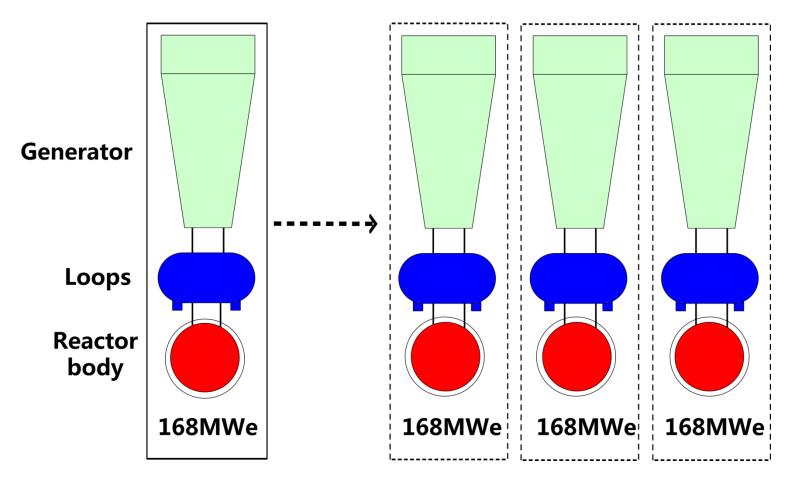

Small Modular TMSR-SF2

A multi-purpose clean energy supplier

Electricity productionSeawater desalination

Hydrogen or methyl alcohol productionSteam supply

A desired reactor for in-land region with high safety


Main Features of TMSR-SF2

Reactor Type	Solid-fueled Molten Salt Reactor		
Residual Heat Removal System in accidents	Passive residual heat removal system		
Generator	Air-Brayton power generator Water-free cooled		
Power	384MWth / 168 MWe		
In / Out temperature	600 / 700 °C		
Fuel	4cm Triso particle sphere		
Coolant	FLiBe (99.995% Li-7)		

TMSR Demonstration Reactor

Scale up for different power requirements

Typical deployment for a station One unit, two units, six units (GW level)

Outline

Background

TMSR Program Overview

Team & Collaboration

TMSR Research Progress

--Key Component Development & test

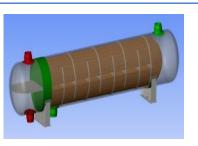
Molten Salt Loops & Key Equipments

Pump

Parameters
 Temp: 550~700°C
 Flow: 300m³/h

Lift : ~ 20m

Rot Speed: 1480r/min


Chemical Pump

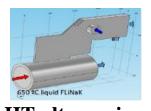
mp Prototype Nuclear-Grade Pump

Heat Exchanger

Salt – Air HX

Salt – Salt HX

Valve


Principle prototype

Pre-engineering prototype

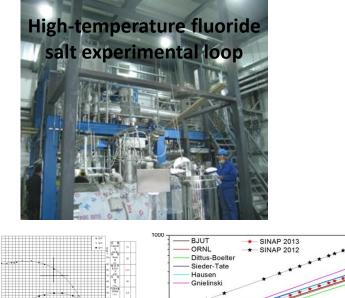
Instrumentation

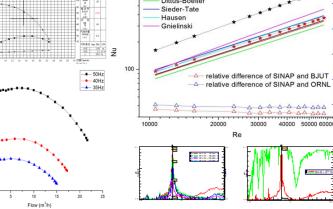
Pressure gauge

HT ultrasonic flowmeter

Loop

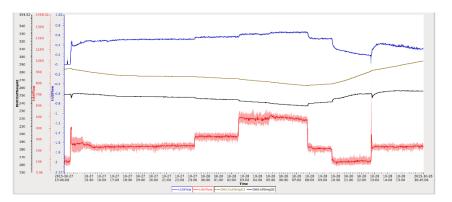
Nitrate test loop


FLiNaK test loop



Natural circulation test loop

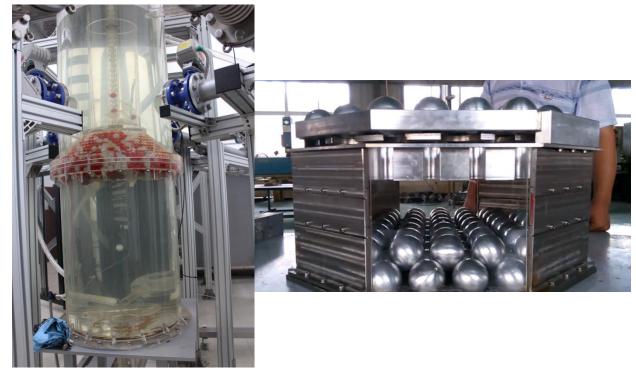
High-temperature molten-salt Loop & test



Hydraulic test of molten salt pump

Thermal hydraulic & mechanical test of loop

20%



Molten salt natural circulation test (Passive safety)

Prototypes & test platforms

Control Rod prototype and its test platform

Simulator of pebble recirculation system

fuel order

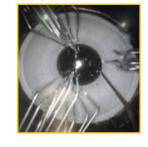
Outline

Background

TMSR Program Overview

Team & Collaboration

TMSR Research Progress


--Key technology Development

- Fluorination and distillation of fluoride salts in cold experiments
- Developing fluorides electrochemical separation techniques
 - Fluorination for U recovery: Verification of process with in-situ monitoring, use of frozen-wall technique to mitigate corrosion, derived from high temperature, F₂ and liquid fluorides melt.
 - Distillation for carrier salt purification: Demonstration of a controllable continuous distillation device, the distillation rate is about 6 Kg per hour, and the DF is > 10² for most neutron poisons.
 - Fluorides electrochemical separation for U recovery: Electro-deposition of U metal from FLiBe-UF₄ melt and recovery > 92%

Fluorination experimental set-up

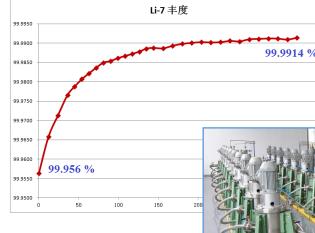
Frozen-wall test

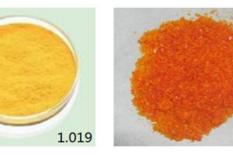
Distillation experimental set-up

Electrochemical experimental set-up

- Succeed in obtaining high purity thorium and enriched ⁷Li using extraction technology
- Enrichment of ⁷Li: As a green technology, centrifugal extraction method was developed to replace mercury method to obtain ⁷Li. High efficient extractants were synthesized. Counter current extraction experiment was conducted and a 99.99 % abundance of ⁷Li was achieved.
- **High purity thorium**: High efficient extraction system was developed to obtain the high purity thorium. A 99.999 % purity of thorium was achieved in batches.

- PWR pH control (abundance \geq 99.9 %)
- MSR coolant (abundance ≥ 99.99 %)


Cascade Enrichment of Lithium-7


- The 160-stages cascade extraction process with φ 20 mm centrifugal extractor
- Cumulative operating time > 1000 h

斜谷窟上海庭田物理研究而

The abundance of lithium isotope was enriched from 99.956% to 99.9914%

Extractants

1.020

- Designed the cascade process flow diagrams
- Be Setting up the 40-stage φ 100 mm centrifugal extractor

- High purity FLiNaK batch production, characterization and purification
- Synthesis of FLiBe and beryllium control method
- Establishing FLiBe-Th-U fuel salts thermodynamics database
- Synthesis technology of nuclear grade FLiBe with boron equivalent < 2 ppm
- Purification technology of high purity FLiNaK with total oxygen < 100 ppm
- High purity FLiNaK batch production of 10 tons per year
- Capability of fluoride salt physical properties measurement

Fluoride salt

Salt production of 10 tons per year

FLiBe Salt

High-quality Molten Salt

Preparation and Purification of FLiBe

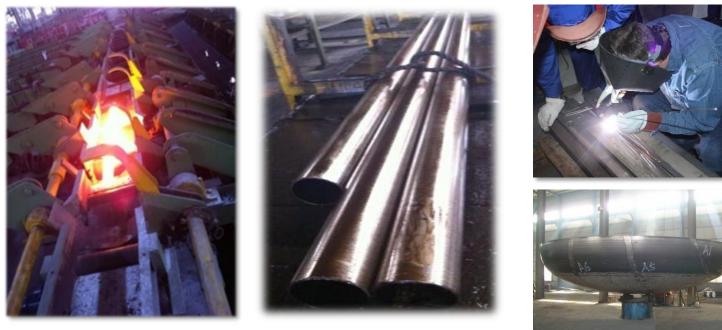
Fusion & purification furnace

Equipment for the preparation of FLiBe (10kg scale)

FLiBe molten salt (left: 1kg; right: 10 kg)

FLiBe single crystal structure

	Na	Mg	Ca	ΑΙ	Р	S	Si	Cr	Fe	Ni	Cu	Cd	Pb	В
ANEI	4.4	10	15	2.3	7	1.6	64	0.5	<0.2	5.3	<0.2	<0.02	<0.6	0.7
ORNL ^a	-	-	-	-	-	<5	-	19	166	26	-	-	-	-



- On-line tritium monitoring
- Tritium stripping using bubbling, tritium separation with cryogenics, and tritium storage

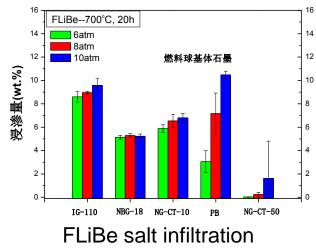
Tritium stripping with bubbling	Tritium separation with cryogenics	Tritium alloy storage	On-line tritium monitoring
Bubble-size control, degassing efficiency > 95%	Kr∖Xe < 1 ppb and H ₂ < 1 ppm in the off gases	Zr ₂ Fe alloy (Hydrogen partial pressure ratio < 0.1 ppm)	On-line monitoring of HTO, HT, K and Xe,

- Technologies for the smelling, processing, and welding of a Nickel-based alloy, UNS N10003, China standard GH3535
- Smelling 6&10 tons of alloy, developed technologies for processing and welding, performance is comparable to Hastelloy N
- Deformation processing technologies for nickel-based alloys with high Moly, manufactured large UNS N10003 seamless pipes

Welding

Component (head)

Hot extrusion

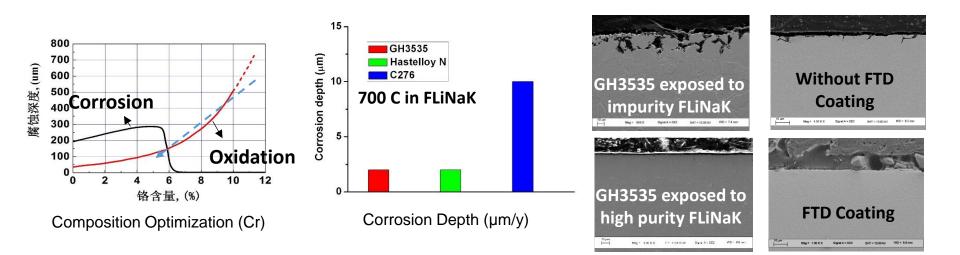

Pipe processing

- Development of the ultrafine grain nuclear graphite for MSR, involved in the establishment of ASME code of MSR nuclear graphite
- Industrial production of ultrafine-grain nuclear graphite NG-CT-50
- Pore diameter < 1 μm, ensured better FLiBe salt infiltration resistance than existing nuclear graphite
- Establishing performance database for NG-CT-50 graphite
- Participating in the international standards development of MSR nuclear graphite

Parameters	NG-CT-50	IG-110
Pore Dia. (um)	0.74	2
Boron (ppm)	< 0.05	0.1

Comparison of graphite

Ultrafine grain nuclear graphite


 Control the structural material corrosion by alloy composition optimization, salt purification and surface treatment

Investigating Corrosion Mechanism

- Salt impurities
- Elements diffusion
- Mass transfer

Developing Corrosion Control Technologies

- Optimize the composition of alloy, diffusion of Cr
- Improve purification technology, minimize impurities
- Fluoride salt thermal diffusion coating

Thanks

INTERNATION OF STATE

